

Ensemble Moteur-Cénératrice Cénérator® 2 03860

NOTICE

Retrouvez l'ensemble de nos gammes sur : www.pierron.fr

PIERRON - ASCO & CELDA • CS 80609 • 57206 SARREGUEMINES Cedex • France

Tél.: 03 87 95 14 77 • **Fax**: 03 87 98 45 91 **E-mail**: education-france@pierron.fr

Présentation

1 - Introduction

Deux petites machines électriques à courant continu sont couplées mécaniquement sur un support. L'une fonctionne en moteur, l'autre en génératrice. Un système optique intégré au boîtier permet de mesurer la vitesse de rotation du moteur à l'aide d'un fréquencemètre ou d'un oscilloscope. Un dynamomètre connecté à la génératrice offre la possibilité de mesurer directement le moment du couple qui agit sur l'axe reliant les deux machines. Ce dynamomètre dispose d'un ajustage du zéro.

L'ensemble moteur-génératrice est un exemple de chaîne énergétique qui a pour objectif de familiariser les élèves avec :

- l'étude simplifiée d'une machine à courant continu ;
- les mesures des paramètres d'un moteur ou d'une génératrice ;
- les mesures de puissance ;
- les calculs de rendements énergétiques ;
- les transferts énergétiques dans un couplage.

Les connexions électriques sont réalisées par l'intermédiaire de douilles de raccordement double puits.

2 - Contenu de l'emballage

- Un maquette Moteur-Génératrice
- Une notice

Caractéristiques techniques

Tension nominale : 18 VIntensité admissible : 8 A

■ Intensité au rendement maximum: 4,5 A

■ Vitesse de rotation en charge : entre 5 600 et 8 400 tr/min

■ Couplemètre gradué en 10⁻³ N.m

■ Alimentation du circuit électrique interne pour la mesure de la vitesse : pile 9 V

■ Raccordement sur douilles double puits Ø 4 mm

■ Dimensions du support incliné (L x l x h) : 240 x 127 x 55-32 mm

■ Masse: 1,3 kg

Préparation à l'utilisation

1 - Matériel nécessaire

- Une pile 9 V type 6LF22, réf. 23622.10
- Une alimentation variable délivrant au moins 5 A, réf. 01992.10
- 4 multimètres (2 utilisés en voltmètre et 2 utilisés en ampèremètre), réf. 40106.10
- Un rhéostat 10 Ω, réf. 04035,10
- Un fréquencemètre, réf. 22049.10 ou un oscilloscope à mémoire

2 - Préparation lors de la première utilisation

Prévoir un rodage d'environ 2 heures avec une alimentation de 6 V continu avec une charge de 10Ω sur la génératrice.

3 - Réglages

Couplemètre : réglage du zéro

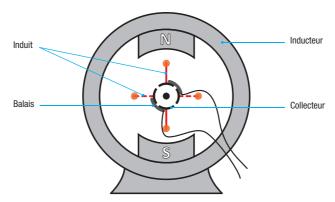
Débloquer l'aiguille du dynamomètre en desserrant sa vis, ajuster l'aiguille, resserrer la vis. Il ne faut effectuer ce réglage que si le graissage est correct, et que si nécessaire.

□ Tachvmètre

Le tachymètre permet de mesurer la vitesse de rotation du moteur. Il est basé sur un système de lecture optique : un capteur intégré dans le boîtier lit le signal réfléchi par la baque noire et argent positionnée autour de l'accouplement moteur-génératrice.

L'électronique de ce système est alimentée par une pile 9 V située dans un compartiment à l'arrière du boîtier

4 - Précautions d'utilisation


La tension nominale du moteur est de 18 V. Il est toutefois possible de dépasser légèrement cette tension pendant un cours instant. Ceci afin d'éviter un échauffement du moteur qui pourrait avoir des conséquences irréversibles sur son bon fonctionnement.

De même nous vous invitons à ne pas faire de manipulation au-delà de 6 A.

Rappels

Description

La machine à courant continu comporte 3 éléments essentiels :

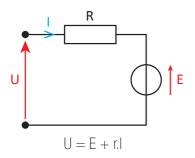
- □ l'inducteur : c'est la partie fixe de la machine (également appelée stator) qui est une source de champ magnétique (on pourrait schématiser cette partie par un aimant avec un pôle Sud et un pôle Nord).
 - Ce champ magnétique est créé soit par un bobinage (quand celui-ci est parcouru par un courant), soit par des aimants permanents.
 - Pour la maquette moteur-génératrice, le champ magnétique est crée par des aimants permanents.
- □ l'**induit**: c'est la partie mobile de la machine (également appelée rotor) qui comporte une ou plusieurs bobines subissant les effet du champ magnétique produit par l'inducteur. il est le siège d'une f.e.m induite alternative.
- □ le **collecteur** et les **balais** : c'est la partie de la machine qui assure la liaison entre l'induit et l'extérieur de la machine. Son rôle est de transformer le courant induit alternatif en courant unidirectionnel.

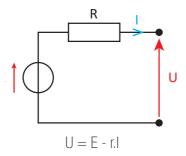
Fonctionnement

La machine à courant continu est une machine réversible, elle peut :

- soit convertir de l'énergie électrique en énergie mécanique. Elle fonctionne en **moteur**.
- soit convertir de l'énergie mécanique en énergie électrique. Elle fonctionne en **génératrice**.

En mode moteur, l'induit est alimenté par une source de courant continu (par le biais des balais qui sont en contact avec l'induit). Le champ magnétique créé par l'inducteur (champ magnétique inducteur) agit sur les conducteurs électriques qui constituent l'induit en leur appliquant des forces électromagnétiques. Ces forces électromagnétiques produisent un couple moteur qui entraînent l'induit en rotation.


En mode génératrice, l'induit est entraîné en rotation par une source extérieure (un moteur). L'induit en mouvement dans le champ magnétique inducteur est alors le siège d'une variation de flux au travers des spires qui le constituent. De cette variation de flux, résulte la création d'une f.e.m alternative qui est redressée et transmise au circuit extérieur par l'intermédiaire de l'ensemble balais et collecteur.


Représentation

Il est possible de représenter la machine à courant continu par les modèles électriques équivalents suivants :

Modèle équivalent du moteur

Modèle équivalent de la génératrice

Avec : r : résistance de l'induit

I : courant traversant le moteur ou la génératrice

E: force électromotrice

Caractéristiques électromécaniques :

■ Force électromotrice : $E = K. \oplus . \Omega$

où **K** est une constante dépendant des caractéristiques du moteur

 Ω est la vitesse de rotation du moteur (en rad/s).

Φ est le flux magnétique maximum traversant les enroulements de l'induit (en Wb).

■ Couple électromagnétique : $T_{EM} = K. \oplus .I$

où l est le courant dans l'induit (en A)

■ Puissance électromagnétique : $P_{EM} = E.I = T_{EM} \cdot \Omega$

où l est le courant dans l'induit (en A)

Rappels

Bilan énergétique

Dans cette partie, nous considérons que l'inducteur est à aimants permanents et que par conséquent on se trouve dans la configuration où le moteur est à excitation indépendante.

En plus de toutes les valeurs mentionnées ci-dessus nous introduisons les grandeurs suivantes :

P_A: la puissance absorbée (en W)

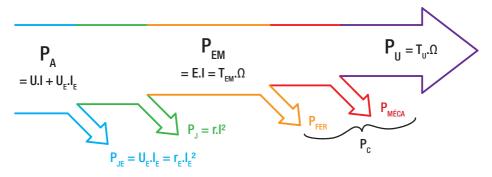
P_J: les pertes joule à l'induit (en W)

 \mathbf{P}_{FER} : les pertes ferro-magnétiques (en W)

 $\mathbf{U}_{\mathbf{E}}$: la tension de l'inducteur (en V)

 $\mathbf{r_{E}}$: la résistance d'inducteur (en Ω)

P_{II}: la puissance utile (en W)


P_{IF}: les pertes joule à l'inducteur (en W)

P_{MÉCA}: les pertes mécaniques (en W)

I_E: le courant d'inducteur (en A)

T_{II}: le couple utile

Le bilan énergétique d'un moteur se traduit par le diagramme ci-dessous :

Pour un moteur à aimants permanents (cas de la maquette moteur-génératrice) $\mathbf{U_E}$, $\mathbf{I_E}$ et $\mathbf{P_{JE}}$ n'existent pas. On peut donc exploiter le diagramme ci-dessus en posant les relations suivantes :

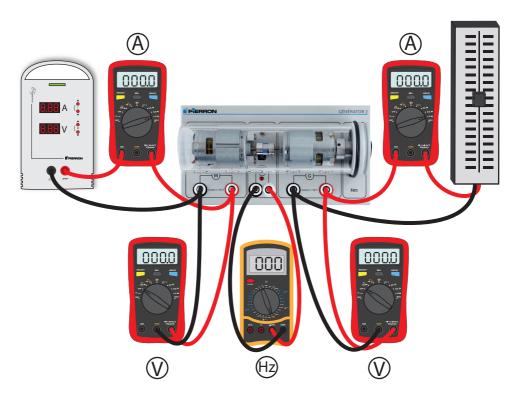
$$\begin{aligned} \boldsymbol{P}_{\text{C}} &= \boldsymbol{P}_{\text{FER}} + \boldsymbol{P}_{\text{MÉCA}} \\ \boldsymbol{P}_{\text{EM}} &= \boldsymbol{P}_{\text{A}} - \boldsymbol{P}_{\text{J}} \\ \boldsymbol{P}_{\text{U}} &= \boldsymbol{P}_{\text{EM}} - \boldsymbol{P}_{\text{C}} \end{aligned}$$

On introduit ici la grandeur P_c représentant les pertes constantes propres à la machine. On dit qu'elles sont constantes car elles ne dépendent pas de la vitesse de rotation de la machine.

Utilisation

1 - Caractéristique du moteur à courant continu

On cherche à déduire de manière expérimentale les principales caractéristiques d'une machine à courant continu, à aimants permanents (c'est-à-dire à flux constant).


1.1. Matériel nécessaire

- Une pile 9 V type 6LF22, réf. 23622.10
- Une alimentation variable délivrant au moins 5 A, réf. 01992.10
- Deux multimètres (l'un utilisé en voltmètre et l'autre en ampèremètre), réf. 40106.10
- Un rhéostat 10 Ω, réf. 04035.10
- Un fréquencemètre, réf. 22049.10 ou un oscilloscope à mémoire

1.2. Essais en charge

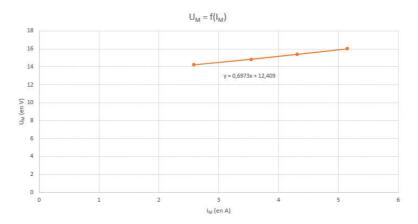
1.2.1. Montage

On alimente le moteur dont la charge est la génératrice qui débite dans un rhéostat **Rh**. On augmente la charge du montage en diminuant la résistance **Rh**

1.2.2. Protocole

- Mettre le rhéostat sur sa valeur maximum 10 Ω.
- Régler la tension d'alimentation pour obtenir une vitesse **n** de 100 tours/s.
- Relever $\mathbf{U}_{\mathbf{M}}$, $\mathbf{I}_{\mathbf{M}}$ et le couple $\mathbf{T}_{\mathbf{EM}}$.
- Mettre le rhéostat sur 5 ohms.
- Régler la tension d'alimentation pour obtenir une vitesse **n** de 100 tours/s.
- Relever $\mathbf{U}_{\mathbf{M}}$, $\mathbf{I}_{\mathbf{M}}$ et le couple $\mathbf{T}_{\mathbf{EM}}$.
- Faire plusieurs autres relevés des 3 valeurs U_M, I_M et T_{EM} en réduisant la valeur du rhéostat (pour atteindre la valeur limite du courant de 5 ou 6 A).
- Compléter le tableau du type suivant, en réalisant au minimum 4 mesures.

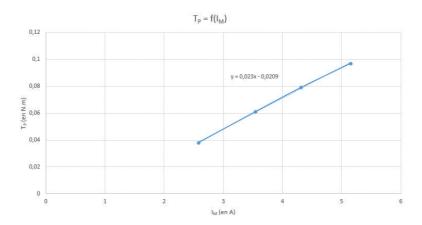
n (tours/s)	U _M (v)	I _M (A)	T _{EM} (N.m)


1.2.3. Résultats et Analyse

Ci-dessous un exemple de valeurs obtenues :

n (tours/s)	U _M (v)	I _M (A)	T _{EM} (N.m)
100	14,23	2,58	0,038
100	14,85	3,54	0,061
100	15,4	4,31	0,079
100	16,02	5,15	0,097

- On trace la courbe $U_M = f(I_M)$.



La courbe obtenue est une droite d'équation $U_M = 0,697.I_M + 12,409$. En rapprochant cette équation du modèle équivalent du moteur $U_M = E + r_M.I_{M'}$ on détermine les valeurs de la résistance du moteur et sa force électromotrice :

$$r_{M} = 0.70 \Omega$$

E = 12,41 V

- On trace la courbe $T_{EM} = f(I_{M})$.

La courbe obtenue est une droite d'équation $T_{EM} = 0.023.I_{M} - 0.0209.$ À une faible constante près la courbe est du type $T_{EM} = K'.I_{M}$ où K' = 0.023.

1.3. Essais à vide

1.3.1. Montage

On alimente le moteur sans aucune charge aux bornes de la génératrice.

1.3.2. Protocole

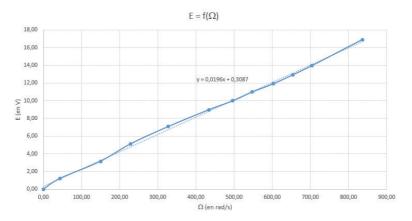
- Augmenter la tension U_M aux bornes du moteur et relever pour chacune des valeurs de la tension d'alimentation, l'intensité aux bornes du moteur I_M et le nombre de tours/seconde, n, effectués par l'axe du moteur.
- Compléter le tableau du type suivant, en réalisant une dizaine de mesures.

U _M (V)	I _M (A)	n (tours/s)

1.3.3. Résultats et Analyse

Ci-dessous des exemples de résultats obtenus :

U _M (v)	I _M (A)	n (tours/s)	E (v)	Ω (rad/s)
0	0	0	0,00	0,00
2	1,13	7	1,21	43,98
4	1,22	23,8	3,15	149,54
6	1,28	36,3	5,10	228,08
8	1,34	52	7,06	326,73
10	1,47	69	8,97	433,54
11	1,45	79	79 9,99	
12	1,47	87	87 10,97	
13	1,54	96	11,92	603,19
14	1,54	104 12,92		653,45
15	1,48	112 13,96 70		703,72
18	1,55	133	16,92	835,66


10

– À partir des valeurs $\mathbf{U}_{\mathbf{M}}$, $\mathbf{I}_{\mathbf{M}}$ et \mathbf{n} , on calcule les valeurs de la vitesse angulaire Ω (en rad/s) et de la force électromotrice \mathbf{E} à l'aide des relations suivantes :

$$\Omega = 2.\pi.n$$
 $U_M = E + r_M.I_M$ avec $r_M = 0.70 Ω$ tel que trouvé au § 1.2.3

- On trace la courbe $E = f(\Omega)$.

On obtient une droite d'équation $E = 0.0196.\Omega + 0.309$.

À une constante près, elle est de la forme $E = K' \cdot \Omega$, avec K' = 0,020.

Aux erreurs d'incertitudes près, on retrouve la valeur de **K'** trouvée initialement au § 1.2.3.

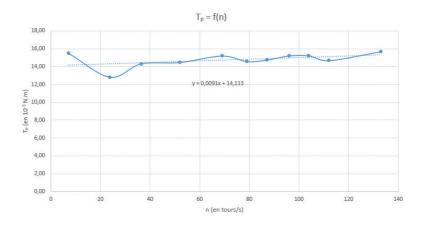
Des valeurs $\mathbf{U}_{\mathbf{m}},\,\mathbf{I}_{\mathbf{m}}$ et \mathbf{n} on peut également déterminer les grandeurs suivantes :

 $ightharpoonup \mathbf{P_c}$ qui sont les pertes constantes de la machine. Le moteur ne pouvant être dissocié de la génératrice, on ne peut pas dissocier les pertes constantes issues du moteur $(\mathbf{P_{cm}})$ et celles de la génératrice $(\mathbf{P_{cg}})$.

Comme nous sommes à vide on a $P_A = P_J + P_{CM} + P_{CG}$.

Étant donné que pour le moteur et la génératrice on a utilisé les mêmes machines, on peut supposer que $P_{CG} = P_{CM} = P_{CJ}$ on déduit donc que :

$$2.P_{c} = P_{A} - P_{J}$$
 d'où
$$P_{c} = \frac{1}{2} (U_{M}.I_{M} - r_{M}.I_{M}^{2})$$


 \Box T_{p} , le couple des pertes constantes est tel que $P_{c} = T_{p}$, Ω

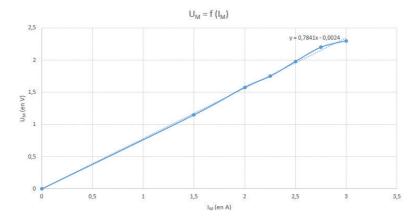
On obtient alors les valeurs suivantes :

U _M (v)	I _M (A)	n (tours/s)	P _c (w)	T _P (mN.m)	
2	1,13	7	0,68	15,53	
4	1,22	23,8	1,92	12,83	
6	1,28	36,3	3,27	14,32	
8	1,34	52	4,73	14,48	
10	1,47	69	6,59	15,21	
11	1,45	79	7,24	14,58	
12	1,47	87	8,06	14,75	
13	1,54	96	9,18	15,22	
14	1,54	104	9,95	15,23	
15	1,48	112	10,33	14,68	
18	1,55	133	13,11	15,69	

 On trace ensuite la courbe T_p = f(n), représentant le couple de pertes en fonction de la vitesse de rotation du moteur.

On obtient une droite d'équation $T_p = 0,0091.n + 14,113.$

On remarque bien que le couple de pertes varie peu avec la vitesse du moteur. Cette dernière équation nous permettra de déterminer les pertes constantes pour une vitesse du moteur donnée.


1.4. Variante pour la détermination de la résistance de l'induit

Il est possible de déterminer la valeur de la résistance de l'induit par la méthode voltampèremétrique qui consiste à mesurer la tension aux bornes du moteur lorsque celui-ci est traversé par son courant nominal.

Cette méthode consiste à fixer l'intensité aux bornes du moteur. On bloque alors le moteur (on empêche son axe de tourner) et on mesure la valeur de la tension correspondante.

I _M (v)	U _M (A)	r _M (Ω)
0	0	0
1,5	1,15	0,67
2	1,58	0,79
2,25	1,75	0,78
2,5	1,98	0,79
2,75	2,2	0,80
3	2,3	0,75

En traçant $U_M = f(I_M)$, on obtient une droite passant par l'origine dont la pente correspond à la valeur de la résistance cherchée : $r_M = 0.78~\Omega$.

Aux erreurs de mesures près, la valeurs obtenue par la méthode volt-ampèremétrique est proche de celle déterminée au § 1.2.3.

Pour la suite des mesures, on prendra $\mathbf{r}_{_{\mathbf{M}}}=\mathbf{0,70}~\Omega.$

2 - Calcul du rendement d'un moteur à courant continu - Méthode simple

2.1. Matériel nécessaire

- Une pile 9 V type 6LF22, réf. 23622.10
- Une alimentation variable délivrant au moins 5 A, réf. 01992.10
- Deux multimètres (l'un utilisé en voltmètre et l'autre en ampèremètre), réf. 40106.10
- Un rhéostat 10 Ω, réf. 04035.10
- Un fréquencemètre, réf. 22049.10 ou un oscilloscope à mémoire

2.2. Montage

On alimente le moteur dont la charge est la génératrice qui débite dans un rhéostat Rh.

2.3. Protocole

- Mettre le rhéostat sur sa valeur maximum 10 Ω.
- Régler la tension d'alimentation pour obtenir la vitesse n souhaitée.
- Relever la tension $\mathbf{U}_{\mathbf{M}}$ et le courant $\mathbf{I}_{\mathbf{M}}$ aux bornes du moteur ainsi que la tension $\mathbf{U}_{\mathbf{G}}$ et le courant $\mathbf{I}_{\mathbf{G}}$ aux bornes de la génératrice.
- Mettre le rhéostat sur 5 ohms.
- Régler la tension d'alimentation pour obtenir la même vitesse n que précédemment.
- Relever $\mathbf{U}_{\mathbf{M}}$, $\mathbf{I}_{\mathbf{M}}$, $\mathbf{U}_{\mathbf{G}}$ et $\mathbf{I}_{\mathbf{G}}$ pour cette nouvelle valeur de la charge.
- Faire plusieurs autres relevés des 4 valeurs U_M, I_M, U_G et I_G en réduisant la valeur du rhéostat (pour atteindre la valeur limite du courant de 5 ou 6 A).
- Compléter le tableau du type suivant, en réalisant au minimum 5 mesures pour 4 vitesses différentes.

n (tours/s)	U _M (v)	I _M (A)	U _G (v)	l _g (A)

– Pour chaque série de mesures, calculer la puissance absorbée P_A , la puissance transmise du moteur à la génératrice P_{TR} , la puissance utile P_U . En déduire le rendement du moteur, le rendement total, ainsi que le couple de transmission T_{TR} .

14

2.4. Résultats et Analyse

Ci-dessous des exemples de mesures réalisées :

n (tours/s)	U _M (v)	I _M (A)	U _G (v)	l _G (A)
60	9,02	2,01	6,82	0,66
60	60 9,77 2,3		6,65	0,91
60	10,1	2,64	6,21	1,32
60	10,5	3,3	5,61	2
60	11,58	4,79	4,78	3,47

n (tours/s)	U _M (v)	I _M (A)	U _G (v)	l _G (A)
80	12,14	2,33	9,25	0,9
80	12,52 2,67		8,73	1,29
80	13	3,21	7,33	1,86
80	13,66	4,25	7,6	2,8
80	80 14,64 5,3		6,91	3,9

(t	n tours/s)	U _M (v)	I _M (A)	U _G (v)	l _G (A)
	100	14,19	2,68	11,55	1,12
	100	14,58	3,13	11,18	1,59
	100	14,87	3,56	10,7	2,14
	100	15,33	4,09	10,26	2,72
	100	16,18	5,02	9,4	3,6

n (tours/s)	U _M (V) I _M (A)		U _G (v)	l _G (A)
120	17,03	2,81	13,75	1,33
120	17,47	3,17	13,48	1,74
120	17,9	3,7	12,9	2,32
120	18,51	4,43	12,41	3,05
120	18,95	5,21	11,88	3,84

Pour calculer les puissances absorbée, transmise du moteur à la génératrice et utile, on utilise les formules suivantes :

$$\begin{aligned} \mathbf{P}_{\mathbf{A}} &= \mathbf{U}_{\mathbf{M}}.\mathbf{I}_{\mathbf{M}} \\ \mathbf{P}_{\mathbf{TR}} &= \mathbf{P}_{\mathbf{A}} - \mathbf{P}_{\mathbf{J}} - \mathbf{P}_{\mathbf{C}} \end{aligned}$$

où $\mathbf{P}_{\mathbf{J}}$ représente les pertes joule : $\mathbf{P}_{\mathbf{J}} = \mathbf{R}_{\mathbf{M}} . \mathbf{I}_{\mathbf{M}}^{2}$

 ${f P_c}$ représente les pertes constantes qui sont déterminées par : ${f P_c} = {f T_p}.\Omega$ (où ${f T_p}$ est obtenu par l'équation ${f T_p} = 0,0091.n + 14,113$, trouvée au § 1.2.3).

- Déterminer enfin, pour chaque série de mesures, le rendement du moteur et le rendement total tels que :

$$\eta_{M} = P_{TR}/P_{A}$$

$$\eta_{TOT} = P_{I}/P_{A}$$

Exemples de résultats obtenus :

Pour n = 60 tours/s, on trouve $T_p = 14,66.10^{-3} \text{ N.m}$

n (tours/s)	U _M (v)	I _M (A)	U _G (v)	I _G (A)	P _A (v)	P _{TR} (W)	P _U (W)	$\eta_{\scriptscriptstyle M}$	$\eta_{_{ extsf{TOT}}}$
60	9,02	2,01	6,82	0,66	18,13	9,78	4,50	0,54	0,25
60	9,77	2,3	6,65	0,91	22,47	13,24	6,05	0,59	0,27
60	10,1	2,64	6,21	1,32	26,66	16,26	8,20	0,61	0,31
60	10,5	3,3	5,61	2	34,65	21,50	11,22	0,62	0,32
60	11,58	4,79	4,78	3,47	55,47	33,88	16,59	0,61	0,30

Pour n = 80 tours/s, on trouve $T_{\mbox{\tiny p}} = 14,\!84.10^{\text{\tiny -3}}\mbox{ N.m}$

n (tours/s)	U _M (v)	I _M (A)	U _G (v)	I _G (A)	P _A (V)	P _{TR} (W)	P _U (W)	$\eta_{_{ ext{M}}}$	$\eta_{ ext{TOT}}$
80	12,14	2,33	9,25	0,9	28,29	17,03	8,33	0,60	0,29
80	12,52	2,67	8,73	1,29	33,43	20,98	11,26	0,63	0,34
80	13	3,21	7,33	1,86	41,73	27,06	13,63	0,65	0,33
80	13,66	4,25	7,6	2,8	58,06	37,95	21,28	0,65	0,37
80	14,64	5,3	6,91	3,9	77,59	50,47	26,95	0,65	0,35

Pour n = 100 tours/s, on trouve $T_p = 15,02.10^{-3} \text{ N.m}$

n (tours/s)	U _M (v)	I _M (A)	U _G (v)	l _G (A)	P _A (V)	P _{TR} (W)	P _U (W)	$\eta_{_{\text{M}}}$	$\eta_{_{TOT}}$
100	14,19	2,68	11,55	1,12	38,03	23,56	12,94	0,62	0,34
100	14,58	3,13	11,18	1,59	45,64	29,34	17,78	0,64	0,39
100	14,87	3,56	10,7	2,14	52,94	34,63	22,90	0,65	0,43
100	15,33	4,09	10,26	2,72	62,70	41,55	27,91	0,66	0,45
100	16,18	5,02	9,4	3,6	81,22	54,14	33,84	0,67	0,42

16 03860-8

Pour n = 120 tours/s, on trouve $T_p = 15,21.10^{-3} \text{ N.m}$

n (tours/s)	U _M (v)	I _M (A)	U _G (v)	l _G (A)	P _A (V)	P _{TR} (W)	P _U (W)	$\eta_{_{M}}$	$\eta_{_{TOT}}$
120	17,03	2,81	13,75	1,33	47,85	30,86	18,29	0,64	0,38
120	17,47	3,17	13,48	1,74	55,38	36,88	23,46	0,67	0,42
120	17,9	3,7	12,9	2,32	66,23	45,18	29,93	0,68	0,45
120	18,51	4,43	12,41	3,05	82,00	56,80	37,85	0,69	0,46
120	18,95	5,21	11,88	3,84	98,73	68,26	45,62	0,69	0,46

On constante que le meilleur rendement est obtenu pour :

- Une tension de 18 V
- Une intensité de 4,5 A
- Une vitesse de 120 tours/seconde

On sait que
$$\eta_{\text{TOT}} = \frac{P_{\text{U}}}{P_{\text{A}}} = \frac{P_{\text{U}}}{P_{\text{TR}}} \times \frac{P_{\text{TR}}}{P_{\text{A}}} = \eta_{\text{G}} \times \eta_{\text{M}}$$
.

Or à partir des mesures réalisées on constate que $\eta_{\text{TOT}} = \eta_{\text{M}}^{\ \ 2}$ d'où $\eta_{\text{G}} = \eta_{\text{M}}^{\ \ }$ le rendement du moteur est identique au rendement de la génératrice.

Cela confirme bien que ce sont 2 mêmes machines qui sont utilisées, l'une en moteur, l'autre en génératrice.

3 - Calcul du rendement d'un moteur à courant continu - Méthode des pertes séparées

3.1. Matériel nécessaire

- Une pile 9 V type 6LF22, réf. 23622.10
- Une alimentation variable délivrant au moins 5 A, réf. 01992.10
- Deux multimètres (l'un utilisé en voltmètre et l'autre en ampèremètre), réf. 40106.10
- Un rhéostat 10 Ω, réf. 04035.10
- Un fréquencemètre, réf. 22049.10 ou un oscilloscope à mémoire

3.2. Essais à vide

Refaire les mêmes mesures qu'au § 1.3 pour déterminer :

- Le couple de pertes T_{p} en fonction de la vitesse de rotation n.
- Le couple de pertes $\mathbf{T}_{\mathbf{p}}$ en fonction de la vitesse de la tension d'alimentation $\mathbf{U}_{\mathbf{M}}$
- La constante K' telle que $E = K' \cdot \Omega$.

Ces valeurs seront nécessaires aux mesures ci-dessous.

N. B : Dans la suite des essais, les valeurs ont été calculées à partir des résultats obtenus au § 1.3.

3.3. Essais en charge

3.3.1. Montage

On alimente le moteur dont la charge est la génératrice qui débite dans un rhéostat Rh.

3.3.1. Mesure à vitesse constante

- Augmenter progressivement la charge du Rhéostat et ajuster la tension d'alimentation pour maintenir la vitesse constante.
- Relever les valeurs de $\mathbf{U}_{\mathbf{M}}$ et $\mathbf{I}_{\mathbf{M}}$.
- Pour chaque couple de valeurs, compléter le tableau suivant :

n (en tours/s)	U _M (en V)	l _M (en A)	P _A (en W)	Pertes _M	P _U (en A)	T _{EM} (en mN.m)	T _U (en mN.m)	$\eta_{\scriptscriptstyleM}$

18 03860-8

On rappellera que:

$$\begin{aligned} P_{A} &= U_{M}.I_{M} \\ Pertes_{M} &= P_{J} - P_{C} \\ P_{U} &= P_{A} - Pertes_{M} \\ T_{EM} &= (P_{A} - P_{J}) / \Omega \\ T_{U} &= P_{U} / \Omega \end{aligned}$$

où $\mathbf{P_J}$ représente les pertes joule : $\mathbf{P_J} = \mathbf{R_M}.\mathbf{I_M^2}$

 $\textbf{P}_{\textbf{c}}$ représente les pertes constantes qui sont déterminées par : $P_{\text{c}}=T_{\text{p}}.\Omega$ (où T_{p} est obtenu par l'équation $T_{\text{p}}=0,0091.n+14,113,$ trouvée au § 1.2.3).

Exemples de résultats obtenus :

Pour n = 60 tours/s, on trouve $T_p = 14,66.10^{-3} \text{ N.m}$

n (en tours/s)	U _M (en V)	l _M (en A)	P _A (en W)	Pertes _M (en A)	P _U (en A)	T _{EM} (en mN.m)	T _U (en mN.m)	η_{M}
60	9,44	2,09	19,73	8,58	11,15	48,45	29,56	0,56
60	9,62	2,55	24,53	10,08	14,45	60,34	38,34	0,59
60	9,78	3,14	30,71	12,43	18,28	75,63	48,49	0,60
60	10,73	4,42	47,43	19,20	28,22	117,60	74,87	0,60

Pour n = 60 tours/s, on trouve $T_p = 14,66.10^{-3} \text{ N.m}$

n (en tours/s)	U _M (en V)	l _M (en A)	P _A (en W)	Pertes _M (en A)	P _U (en A)	T _{EM} (en mN.m)	T _U (en mN.m)	$\eta_{_{M}}$
80	11,92	2,4	28,61	11,49	17,12	53,57	34,05	0,60
80	12,32	2,66	32,77	12,41	20,36	61,49	40,50	0,62
80	13,21	3,6	47,56	16,53	31,02	89,60	61,72	0,65
80	14,5	5,3	76,85	27,12	49,73	145,51	98,93	0,65

Utilisation

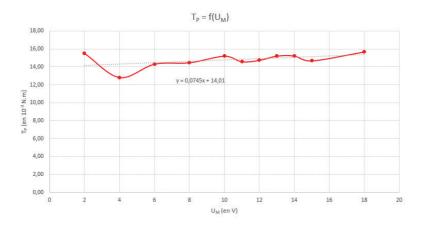
Pour n=100 tours/s, on trouve $T_p=15,02.10^{-3}\ N.m$

n (en tours/s)	U _M (en V)	l _M (en A)	P _A (en W)	Pertes _M (en A)	P _U (en A)	T _{EM} (en mN.m)	T _U (en mN.m)	η_{M}
100	14,5	2,62	37,99	14,24	23,75	57,54	37,79	0,63
100	14,97	3,02	45,21	15,82	29,39	68,59	46,77	0,65
100	15,66	3,58	56,06	18,41	37,65	85,24	59,93	0,67
100	16,49	5,35	88,22	29,47	58,75	134,45	93,50	0,67

Pour n = 120 tours/s, on trouve $T_p = 15,21.10^{-3} \text{ N.m}$

n (en tours/s)	U _M (en V)	l _M (en A)	P _A (en W)	Pertes _M (en A)	P _U (en A)	T _{EM} (en mN.m)	T _U (en mN.m)	$\eta_{\scriptscriptstyle M}$
120	17,7	2,82	49,91	17,03	32,88	63,58	43,61	0,66
120	18,14	3,42	62,04	19,65	42,39	79,11	56,22	0,68
120	18,7	4,1	76,67	23,23	53,44	97,88	70,88	0,70
120	19,3	4,85	93,61	27,93	65,67	119,64	87,10	0,70

3.3.1. Mesure à tension constante


- À chaque modification de la valeur de la charge du Rhéostat on réajuste la tension d'alimentation pour la maintenir constante.
- Relever les valeurs de $\mathbf{I}_{\mathbf{M}}$ et \mathbf{n} .
- Pour chaque couple de valeurs, compléter le tableau suivant :

U _M (en V)	l _M (en A)	n (en tours/s)	P _A (en W)	P _U (en A)	Ω (en rad/s)	T _U (en mN.m)	$\eta_{_{M}}$

On rappellera que T_p peut être obtenue cette fois à partir de la courbe $T_p = f(U_M)$ issue de l'essai à vide réalisé au § 3.2.

20 03860-8

Cette courbe peut être représentée par une droite d'équation $T_{_{\rm P}} = 0.0745.U_{_{\rm M}} + 14,01.$

Exemples de résultats obtenus :

Pour n = $U_M = 6$ V, on trouve $T_P = 14,66.10^{-3}$ N.m

U _M (en V)	l _M (en A)	n (en tours/s)	P _A (en W)	P _U (en A)	Ω (en rad/s)	T _U (en mN.m)	$\eta_{_{ ext{M}}}$
6	1,62	33	9,72	4,89	207,35	23,56	0,50
6	1,88	33	11,28	5,81	207,35	28,01	0,51
6	2,02	29	12,12	6,63	182,21	36,38	0,55
6	2,53	27	15,18	8,25	169,65	48,61	0,54
6	3,04	23	18,24	9,68	144,51	66,99	0,53

Pour $n=U_{M}=12$ V, on trouve $T_{p}=14,66.10^{-3}$ N.m

U _M (en V)	l _M (en A)	n (en tours/s)	P _A (en W)	P _U (en A)	Ω (en rad/s)	T _U (en mN.m)	$\eta_{_{ ext{M}}}$
12	2,3	81	27,60	16,31	508,94	32,05	0,59
12	2,52	77	30,24	18,58	483,81	38,41	0,61
12	2,93	73	35,16	22,31	458,67	48,65	0,63
12	3,68	70	44,16	28,13	439,82	63,95	0,64
12	4,92	65	59,04	36,01	408,41	88,17	0,61

Pour $n=U_{_{M}}=18$ V, on trouve $T_{_{P}}=14,66.10^{-3}$ N.m

U _M	l _M	n	P _A	P _U	Ω	T _U	$\eta_{_{M}}$
(en V)	(en A)	(en tours/s)	(en W)	(en A)	(en rad/s)	(en mN.m)	
18	2,93	134	52,74	34,06	841,95	40,45	0,65
18	3,37	132	60,66	40,23	829,38	48,50	0,66
18	3,7	130	66,60	44,72	816,81	54,75	0,67
18	4,04	127	72,72	49,28	797,96	61,76	0,68
18	4,76	123	85,68	58,19	772,83	75,29	0,68

On constante que le meilleur rendement est atteint pour :

- Une tension de 18 V
- Une intensité de 4,5 A
- Une vitesse de 120 tours/seconde

On arrive ainsi à la même conclusion d'au § 2.4.

22

Entretien et Carantie

1 - Entretien

Aucun entretien particulier n'est nécessaire au fonctionnement de votre appareil.

Toutes les opérations de maintenance ou de réparation doivent être réalisées par PIERRON - ASCO & CELDA. En cas de problème, n'hésitez pas à contacter le Service Clients.

2 - Garantie

Les matériels livrés par PIERRON - ASCO & CELDA sont garantis, à compter de leur livraison, contre tous défauts ou vices cachés du matériel vendu. Cette garantie est valable pour une durée de 2 ans après livraison et se limite à la réparation ou au remplacement du matériel défectueux. La garantie ne pourra être accordée en cas d'avarie résultant d'une utilisation incorrecte du matériel.

Sont exclus de cette garantie : la verrerie de laboratoire, les lampes, fusibles, tubes à vide, produits, pièces d'usure, matériel informatique et multimédia.

Certains matériels peuvent avoir une garantie inférieure à 2 ans, dans ce cas, la garantie spécifique est indiquée sur le catalogue ou document publicitaire.

Le retour de matériel sous garantie doit avoir notre accord écrit.

Vices apparents : nous ne pourrons admettre de réclamation qui ne nous serait pas parvenue dans un délai de quinze jours après livraison au maximum. À l'export, ce délai est porté à un mois.

La garantie ne s'appliquera pas lorsqu'une réparation ou intervention par une personne extérieure à notre Société aura été constatée.

Notes	₽ PIERRON

PIERRON - ASCO & CELDA

CS 80609 • 57206 SARREGUEMINES Cedex • France **Tél.**: 03 87 95 14 77

Fax: 03 87 98 45 91 E-mail: education-france@pierron.fr