Effet Tunnel

Plan de la présentation

Prérequis

- Équation de Schrödinger stationnaire
- Densité de probabilité, densité de courant de probabilité
- Ondes évanescentes
- Radioactivité
- Confinement d'une particule quantique

Sommaire

- Introduction: nature ondulation de l'effet tunnel
- Modélisation effet tunnel
- Applications:
 - Microscope à effet tunnel
 - \circ Radioactivité α

Nature ondulation de l'effet tunnel

Effet tunnel avec des ondes centimétrique

Quelques ordres de grandeur

Coefficient de transmission et distance caractéristique de pénétration (inverse module vecteur d'onde):

$$T \propto \exp(-2a/\delta)$$
 avec $\delta = \frac{\hbar}{\sqrt{2m(V_0 - E)}}$

Particule	m (kg)	V_0 (eV)	a (nm)	δ (nm)	T
Électron	10^{-30}	4	0,3	0,1	10^{-2}
Électron	10^{-30}	40	0, 3	4×10^{-2}	10^{-6}
Électron	10^{-30}	4	3	0,1	10^{-20}
Proton	10^{-27}	4	0, 3	4×10^{-3}	10^{-63}
Proton	10^{-27}	4	3	2×10^{-3}	10^{-628}

Microscope à effet tunnel

Binnig et Röhrer durant les années 1980-1985 (prix Nobel en 1986).

Modes d'utilisation

Le coefficient de transmission est bien approxime par:

$$T \approx C(U) \frac{16 E W}{(E+W)^2} \exp(-2ka)$$
 avec $k = \sqrt{\frac{2mW}{\hbar^2}}$

Deux modes d'utilisation

- 1. Topographie: On fixe *U* constant, et on maintient I constant en bougeant *a*. On peut ainsi mesurer les variations de hauteur du substrat.
- Spectroscopie: Fixer la position de la pointe et faire varier U afin d'extraire des propriétés physiques du substrat (comme le travail d'extraction W). Cela donne la nature chimique locale du substrat.

Résolution transversale:

Résolution longitudinale (topographique)

Modèle de Tersoff et D.R. Hamann de la jonction tunnel pointe-plan.

• Résolution transversale:

Résolution longitudinale (topographique)

Modèle de Tersoff et D.R. Hamann de la jonction tunnel pointe-plan.

Résolution transversale:

$$\Delta x = \sqrt{\frac{a \ln(2)}{k(W)}}$$
 $a = 0.5 nm$ $\implies \Delta x = 0.2 nm$ $W = 4.3 \, eV \, (zinc)$

Ordre de grandeur pour :

Résolution longitudinale (topographique)

Modèle de Tersoff et D.R. Hamann de la jonction tunnel pointe-plan.

Résolution transversale:

$$\Delta x = \sqrt{\frac{a \ln(2)}{k(W)}}$$
 $a = 0.5 nm$ $\implies \Delta x = 0.2 nm$ $W = 4.3 \, eV \, (zinc)$

Ordre de grandeur pour :

Résolution longitudinale (topographique)

Appareil apte à distinguer des variations relatives finies (de l'ordre du pour cent).

$$I = CU\frac{k}{a}\exp(-2ka)$$

Modèle de Tersoff et D.R. Hamann de la jonction tunnel pointe-plan.

Résolution transversale:

$$\Delta x = \sqrt{\frac{a \ln(2)}{k(W)}}$$
 $a = 0.5 nm$ $\Rightarrow \Delta x = 0.2 nm$ $W = 4.3 \, eV \, (zinc)$

Ordre de grandeur pour :

Résolution longitudinale (topographique)

Appareil apte à distinguer des variations relatives finies (de l'ordre du pour cent).

$$I = CU\frac{k}{a}\exp(-2ka)$$
 $\Delta I/I = 0.02$ $\Longrightarrow \Delta 1 \approx pm$ $\Delta a \approx 1/2\sqrt{\frac{\hbar^2}{2mW}}\frac{\Delta I}{I}$ $W = 4.3 \text{ eV (zinc)}$

Microscope à effet tunnel

Atomes de silicium à la surface d'un cristal de carbure de silicium (SiC). Image obtenue à l'aide d'un Microscope à effet tunnel.

Radioactivité α : résultats expérimentaux

La désintégration alpha peut être vue comme une forme de fission nucléaire:

Radioactivité α : résultats expérimentaux

La désintégration alpha peut être vue comme une forme de fission nucléaire:

Loi phénoménologique Geiger-Nutall (1911)

$$In(au_{1/2}) = a + rac{b}{\sqrt{F}}$$

Radioactivité α : Théorie de Gamow

La particule α préexiste dans le noyaux mais elle est confinée.

nucleus.

 On décompose la barrière coulombien en petite barrières rectangulaires d'épaisseur dr suffisamment grande (approximation de barrière épaisse).

- On décompose la barrière coulombien en petite barrières rectangulaires d'épaisseur dr suffisamment grande (approximation de barrière épaisse).
- On calcule le coefficient de transmission $T = \prod_i T_i$ (T_i de chaque barrière).

$$ln(T) = a' - \frac{b}{\sqrt{E}}$$

- On décompose la barrière coulombien en petite barrières rectangulaires d'épaisseur dr suffisamment grande (approximation de barrière épaisse).
- On calcule le coefficient de transmission $T = \prod_i T_i$ (T_i de chaque barrière).

$$ln(T) = a' - \frac{b}{\sqrt{E}}$$

• La particule α oscille entre les bords du puits à une vitesse $v = \sqrt{2E/m}$.

- On décompose la barrière coulombien en petite barrières rectangulaires d'épaisseur dr suffisamment grande (approximation de barrière épaisse).
- On calcule le coefficient de transmission $T = \prod_i T_i$ (T_i de chaque barrière).

$$In(T) = a' - \frac{b}{\sqrt{E}}$$

- La particule α oscille entre les bords du puits à une vitesse $v = \sqrt{2E/m}$.
- On calcule la probabilité de franchir la barrière P_{tunnel} en un intervalle dt:

$$P_{tunnel} \approx Tfdt$$
 avec $f = v/(2r_0)$ fréquence des chocs

- On décompose la barrière coulombien en petite barrières rectangulaires d'épaisseur dr suffisamment grande (approximation de barrière épaisse).
- On calcule le coefficient de transmission $T = \prod_i T_i$ (T_i de chaque barrière).

$$In(T) = a' - \frac{b}{\sqrt{E}}$$

- La particule α oscille entre les bords du puits à une vitesse $v = \sqrt{2E/m}$.
- On calcule la probabilité de franchir la barrière P_{tunnel} en un intervalle dt:

$$P_{tunnel} \approx T f dt$$
 avec $f = v/(2r_0)$ fréquence des chocs

• Pour *N* noyaux on obtient une loi de désintégration:

$$\frac{dN}{dt} = -NfT$$

- On décompose la barrière coulombien en petite barrières rectangulaires d'épaisseur dr suffisamment grande (approximation de barrière épaisse).
- On calcule le coefficient de transmission $T = \prod_i T_i$ (T_i de chaque barrière).

$$ln(T) = a' - \frac{b}{\sqrt{E}}$$

- La particule α oscille entre les bords du puits à une vitesse $v = \sqrt{2E/m}$.
- On calcule la probabilité de franchir la barrière P_{tunnel} en un intervalle dt:

$$P_{tunnel} \approx T f dt$$
 avec $f = v/(2r_0)$ fréquence des chocs

• Pour *N* noyaux on obtient une loi de désintégration:

$$\frac{dN}{dt} = -NfT$$

ullet On peut donc calculer le temps de demi-vie $au_{1/2}$

$$au_{1/2} = \frac{\ln(2)}{fT} \implies \text{ loi phénoménologique Geiger-Nutall}$$

Radioactivité α : Prédiction de théorie de Gamow

Courbe comparant la théorie de Gamow (1928) et les résultats expérimentaux.

Figure 1: Ordonnée en échelle log, abscisse en échelle racine

Résumé et conclusions

Analogie effet tunnel et effet peau en optique

Résumé et conclusions

- Analogie effet tunnel et effet peau en optique
- Effet tunnel quantique:
 possibilité de "tunneler"

 description ondulatoire des particules

Résumé et conclusions

- Analogie effet tunnel et effet peau en optique
- Effet tunnel quantique:
 possibilité de "tunneler"

 description ondulatoire des particules
- $\, \bullet \,$ Applications: microscope effet tunnel et radioactivité α